The effect of C-type natriuretic peptide on delayed rectifier potassium currents in gastric antral circular myocytes of the guinea-pig.

نویسندگان

  • H Y Xu
  • X Huang
  • M Yang
  • J-B Sun
  • L-H Piao
  • Y Zhang
  • L Gao
  • W-X Xu
چکیده

C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch-clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [I(K (V))] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1+/-1.6 % (n=7, P<0.05), 78.4+/-2.6 % (n=10, P<0.01) and 67.7+/-2.3 % (n=14, P<0.01), at concentrations of 0.01 micromol/l, 0.1 micromol/l and 1 micromol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 micromol/l LY83583, a guanylate cyclase inhibitor, the 1 ?micromol/l CNP-induced inhibition of I(K (V)) was significantly impaired but when the cells were preincubated with 0.1 micromol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 micromol/l CNP-induced inhibition of I(K (V)) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on I(K (V)). CNP-induced inhibition of I(K (V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibits the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of actin microfilament on potassium current in guinea pig gastric myocytes.

AIM To investigate the effect of actin microfilament on potassium current and hyposmotic membrane stretch-induced increase of potassium current in gastric antral circular myocytes of guinea pig. METHODS Whole-cell patch clamp technique was used to record potassium current in isolated gastric myocyes. RESULTS When the membrane potential was clamped at -60 mV, an actin microfilament disruptor...

متن کامل

The min K channel underlies the cardiac potassium current IKs and mediates species-specific responses to protein kinase C.

A clone encoding the guinea pig (gp) min K potassium channel was isolated and expressed in Xenopus oocytes. The currents, gpIsK, exhibit many of the electrophysiological and pharmacological properties characteristic of gpIKs, the slow component of the delayed rectifier potassium conductance in guinea pig cardiac myocytes. Depolarizing commands evoke outward potassium currents that activate slow...

متن کامل

Effects of cadmium and nisoldipine on the delayed rectifier potassium current in guinea pig ventricular myocytes.

Block of the slow inward calcium current (Isi) during assessment of the delayed rectifier potassium current (IK) of cardiac ventricular myocytes is commonly achieved by use of either inorganic compounds such as cadmium or dihydropyridine derivatives such as nisoldipine. Effects of these two Isi blockers on IK characteristics of guinea pig ventricular myocytes were compared in this study. Curren...

متن کامل

The new antiarrhythmic substance AWD 23-111 inhibits the delayed rectifier potassium current (IK) in guinea pig ventricular myocytes.

The effects of N-(dicyclohexyl-carbamoylmethyl)-N-(3-diethylamino-propyl)-4-nitro -benzamide hydrochloride (AWD 23-111), a novel antiarrhythmic compound, were studied in isolated cardiomyocytes of guinea pigs. Using whole-cell configuration of the patch-clamp technique AWD 23-111 was tested for its ability to block the delayed rectifier potassium channel (IK). In guinea pig ventricular myocytes...

متن کامل

Effects of the chromanol 293B, a selective blocker of the slow, component of the delayed rectifier K+ current, on repolarization in human and guinea pig ventricular myocytes.

OBJECTIVES The slow component of the delayed rectifier K+ current (IKs) is believed to be important in cardiac repolarization, and may be a potential target for antiarrhythmic drugs, but its study has been limited by a lack of specific blockers. The chromanol derivate 293B blocks currents expressed by minK and not HERG in Xenopus oocytes, but little is known about its effects on native currents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological research

دوره 57 1  شماره 

صفحات  -

تاریخ انتشار 2008